Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants
- Richard B. van Breemen*, Ruth N. Muchiri, Timothy A. Bates, Jules B. Weinstein, Hans C. Leier, Scotland Farley, and Fikadu G. Tafesse Cite this: J. Nat. Prod. 2022, XXXX, XXX, XXX-XXX Publication Date:January 10, 2022
Abstract
As a complement to vaccines, small-molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, which cause COVID-19. Affinity selection–mass spectrometry was used for the discovery of botanical ligands to the SARS-CoV-2 spike protein. Cannabinoid acids from hemp (Cannabis sativa) were found to be allosteric as well as orthosteric ligands with micromolar affinity for the spike protein. In follow-up virus neutralization assays, cannabigerolic acid and cannabidiolic acid prevented infection of human epithelial cells by a pseudovirus expressing the SARS-CoV-2 spike protein and prevented entry of live SARS-CoV-2 into cells. Importantly, cannabigerolic acid and cannabidiolic acid were equally effective against the SARS-CoV-2 alpha variant B.1.1.7 and the beta variant B.1.351. Orally bioavailable and with a long history of safe human use, these cannabinoids, isolated or in hemp extracts, have the potential to prevent as well as treat infection by SARS-CoV-2.
Results and Discussion
Discovery of Hemp Ligands against SARS-CoV-2
cannabinoidb | UHPLC retention time (min) | fold peak area enrichmentc |
---|---|---|
cannabigerolic acid (CBGA) | 3.8 | 20.5 ± 0.51 |
tetrahydrocannabinolic acid (THCA-A) | 8.2 | 16.7 ± 2.2 |
cannabidiolic acid (CBDA) | 3.7 | 12.2 ± 0.52 |
cannabinolic acid (CBNA) | 6.5 | 5.6 ± 1.4 |
cannabigerol (CBG) | 4.1 | 3.4 ± 0.82 |
cannabinol (CBN) | 5.7 | 3.4 ± 0.78 |
Δ8-tetrahydrocannabinol (Δ8-THC) | 6.8 | 3.1 ± 0.81 |
Δ9-tetrahydrocannabinol (Δ9-THC) | 6.8 | 3.0 ± 0.77 |
cannabidiol (CBD) | 4.2 | 2.9 ± 0.72 |
cannabichromene (CBC) | 8.1 | 2.9 ± 0.75 |
Cannabidivarin (CBDV) | 3.0 | 1.6 ± 0.17 |
Mean ± SE (n = 3).
Equimolar cannabinoid mixture (0.10 μM) incubated with the S1 subunit of spike protein (0.17 μM).
Fold peak area enrichment = (UHPLC-MS/MS peak area experiment)/(UHPLC-MS/MS peak area negative control using denatured spike protein S1 subunit).
Dissociation Constants and Ligand Docking
Inhibition of SARS-CoV-2 Cell Entry
Experimental Section
General Experimental Procedures
Plant Material
Affinity Selection–Mass Spectrometry
Equilibrium Dissociation Constants
Ligand Docking
Pseudotyped Lentivirus Production
SARS-CoV-2 Virus Propagation
Pseudovirus Neutralization Assay
Focus Forming Assay for Live SARS-CoV-2
Immunofluorescence
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jnatprod.1c00946.
-
Tandem mass spectra of affinity selected CBDA, CBGA, and THCA-A and the corresponding standards; cytotoxicity of CBDA in mammalian cell lines (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
The authors thank Shimadzu Scientific Instruments for mass spectrometry support, the Global Hemp Innovation Center for supplying hemp extracts, and the EmerTher company for providing the Ni-NTA magnetic microbeads used in this investigation
References
This article references 49 other publications.
-
1https://www.worldometers.info/coronavirus/, accessed 15 Dec 2021.
-
2Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.html, accessed 15 Dec 2021.
-
3Walensky, R. P.; Walke, H. T.; Fauci, A. S. JAMA 2021, 325, 1037– 1038, DOI: 10.1001/jama.2021.2294
-
4Tahir ul Qamar, M.; Alqahtani, S. M.; Alamri, M. A.; Chen, L. L. J. Pharm. Anal. 2020, 10, 313– 319, DOI: 10.1016/j.jpha.2020.03.009
-
5Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Lancet 2020, 395, 497– 506, DOI: 10.1016/S0140-6736(20)30183-5
-
6Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; Yuan, M.-L.; Zhang, Y.-L.; Dai, F.-H.; Liu, Y.; Wang, Q.-M.; Zheng, J.-J.; Xu, L.; Holmes, E. C.; Zhang, Y.-Z. Nature 2020, 579, 265– 269, DOI: 10.1038/s41586-020-2008-3
-
7Jiang, S.; Hillyer, C.; Du, L. Trends Immunol. 2020, 41, 355– 359, DOI: 10.1016/j.it.2020.03.007
-
8Rabi, F. A.; Al Zoubi, M. S.; Kasasbeh, G. A.; Salameh, D. M.; Al-Nasser, A. D. Pathogens 2020, 9, 231, DOI: 10.3390/pathogens9030231
-
9Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Cell. Mol. Immunol. 2020, 17, 613– 620, DOI: 10.1038/s41423-020-0400-4
-
10Turner, A. J. In Protective Arm of the Renin Angiotensin System (RAS); Unger, T.; Steckelings, U. M.; dos Santos, R. A. S., Eds.; Elsevier: New York, 2015; pp 185– 189. DOI: 10.1016/B978-0-12-801364-9.00025-0
-
11Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; Müller, M. A.; Drosten, C.; Pöhlmann, S. Cell. 2020, 181, 271– 280, DOI: 10.1016/j.cell.2020.02.052
-
12Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. Military Med. Res. 2020, 7, 11, DOI: 10.1186/s40779-020-00240-0
-
13Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.-J.; Jiang, S. Nat. Rev. Microbiol. 2009, 7, 226– 236, DOI: 10.1038/nrmicro2090
-
14Sainz, B., Jr; Mossel, E. C.; Gallaher, W. R.; Wimley, W. C.; Peters, C. J.; Wilson, R. B.; Garry, R. F. Virus Res. 2006, 120, 146– 155, DOI: 10.1016/j.virusres.2006.03.001
-
15Yuan, K.; Yi, L.; Chen, J.; Qu, X.; Qing, T.; Rao, X.; Jiang, P.; Hu, J.; Xiong, Z.; Nie, Y.; Shi, X.; Wang, W.; Ling, C.; Yin, X.; Fan, K.; Lai, L.; Ding, M.; Deng, H. Biochem. Biophys. Res. Commun. 2004, 319, 746– 752, DOI: 10.1016/j.bbrc.2004.05.046
-
16De Clercq, E. J. Clin. Virol. 2001, 22, 73– 89, DOI: 10.1016/S1386-6532(01)00167-6
-
17VanCompernolle, S. E.; Wiznycia, A. V.; Rush, J. R.; Dhanasekaran, M.; Baures, P. W.; Todd, S. C. Virology 2003, 314, 371– 380, DOI: 10.1016/S0042-6822(03)00406-9
-
18Cragg, G. M.; Newman, D. J. Pure Appl. Chem. 2005, 77, 7– 24, DOI: 10.1351/pac200577010007
-
19Dias, D. A.; Urban, S.; Roessner, U. Metabolites 2012, 2, 303– 336, DOI: 10.3390/metabo2020303
-
20von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Habich, D. Angew.Chem. Int. Ed. 2006, 45, 5072– 5129, DOI: 10.1002/anie.200600350
-
21Mishra, B. B.; Tiwari, V. K. Eur. J. Med. Chem. 2011, 46, 4769– 4807, DOI: 10.1016/j.ejmech.2011.07.057
-
22Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2016, 79, 629– 661, DOI: 10.1021/acs.jnatprod.5b01055
-
23Kanjanasirirat, P.; Suksatu, A.; Manopwisedjaroen, S.; Munyoo, B.; Tuchinda, P.; Jearawuttanakul, K.; Seemakhan, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Rangkasenee, N.; Pitiporn, S.; Waranuch, N.; Chabang, N.; Khemawoot, P.; Sa-Ngiamsuntorn, K.; Pewkliang, Y.; Thongsri, P.; Chutipongtanate, S.; Hongeng, S.; Borwornpinyo, S.; Thitithanyanont, A. Sci. Rep. 2020, 10, 19963, DOI: 10.1038/s41598-020-77003-3
-
24Muchiri, R. N.; van Breemen, R. B. J. Mass Spectrom. 2021, 56, e4647, DOI: 10.1002/jms.4647
-
25van Breemen, R. B.; Huang, C. R.; Nikolic, D.; Woodbury, C. P.; Zhao, Y. Z.; Venton, D. L. Anal. Chem. 1997, 69, 2159– 2164, DOI: 10.1021/ac970132j
-
26Kaur, S.; McGuire, L.; Tang, D.; Dollinger, G.; Huebner, V. J. Protein Chem. 1997, 16, 505– 511, DOI: 10.1023/A:1026369729393
-
27Choi, Y.; van Breemen, R. B. Combin. Chem. High Throughput Screen. 2008, 11, 1– 6, DOI: 10.2174/138620708783398340
-
28Rush, M. D.; Walker, E. M.; Prehna, G.; Burton, T.; van Breemen, R. B. J. Am. Soc. Mass Spectrom. 2017, 28, 479– 448, DOI: 10.1007/s13361-016-1564-0
-
29van Breemen, R. B. Curr. Trends Mass Spectrom. 2020, 18, 18– 25
-
30Citti, C.; Linciano, P.; Panseri, S.; Vezzalini, F.; Forni, F.; Vandelli, M. A.; Cannazza, G. Front. Plant Sci. 2019, 10, 120, DOI: 10.3389/fpls.2019.00120
-
31Hazekamp, A.; Fischedick, J. T.; Díez, M. L.; Lubbe, A.; Ruhaak, R. L. In Comprehensive Natural Products II; Mander, L.; Lui, H.-W.; Eds.; Elsevier: Oxford, UK, 2010; pp 1033– 1084.
-
32Pellesi, L.; Licata, M.; Verri, P.; Vandelli, D.; Palazzoli, F.; Marchesi, F.; Cainazzo, M. M.; Pini, L. A.; Guerzoni, S. Eur. J. Clin. Pharmacol. 2018, 74, 1427– 1436, DOI: 10.1007/s00228-018-2516-3
-
34Sun, Y.; Gu, C.; Liu, X.; Liang, W.; Yao, P.; Bolton, J. L.; van Breemen, R. B. J. Am. Soc. Mass Spectrom. 2005, 16, 271– 279, DOI: 10.1016/j.jasms.2004.11.002
-
35Zhao, Y. Z.; van Breemen, R. B.; Nikolic, D.; Huang, C. R.; Woodbury, C. P.; Schilling, A.; Venton, D. L. J. Med. Chem. 1997, 40, 4006– 4012, DOI: 10.1021/jm960729b
-
36Liu, J.; Burdette, J. E.; Xu, H.; Gu, C.; van Breemen, R. B.; Bhat, K. P.; Booth, N.; Constantinou, A. I.; Pezzuto, J. M.; Fong, H. H.; Farnsworth, N. R.; Bolton, J. L. J. Agric. Food Chem. 2001, 49, 2472– 2479, DOI: 10.1021/jf0014157
-
37Rush, M. D.; Walker, E. M.; Burton, T.; van Breemen, R. B. J. Nat. Prod. 2016, 79, 2898– 2902, DOI: 10.1021/acs.jnatprod.6b00693
-
38Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K. Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Cell 2020, 181, 894– 904, DOI: 10.1016/j.cell.2020.03.045
-
39Yi, C.; Sun, X.; Ye, J.; Ding, L.; Liu, M.; Yang, Z.; Lu, X.; Zhang, Y.; Ma, L.; Gu, W.; Qu, A.; Xu, J.; Shi, Z.; Ling, Z.; Sun, B. Cell Mol. Immunol. 2020, 17, 621– 630, DOI: 10.1038/s41423-020-0458-z
-
40Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E. J.; Msomi, N.; Mlisana, K.; von Gottberg, A.; Walaza, S.; Allam, M.; Ismail, A.; Mohale, T.; Glass, A. J.; Engelbrecht, S.; Van Zyl, G.; Preiser, W.; Petruccione, F.; Sigal, A.; Hardie, D.; Marais, G.; Hsiao, N. Y.; Korsman, S.; Davies, M. A.; Tyers, L.; Mudau, I.; York, D.; Maslo, C.; Goedhals, D.; Abrahams, S.; Laguda-Akingba, O.; Alisoltani-Dehkordi, A.; Godzik, A.; Wibmer, C. K.; Sewell, B. T.; Lourenço, J.; Alcantara, L. C. J.; Kosakovsky Pond, S. L.; Weaver, S.; Martin, D.; Lessells, R. J.; Bhiman, J. N.; Williamson, C.; de Oliveira, T. Nature 2021, 592, 438– 443, DOI: 10.1038/s41586-021-03402-9
-
41Wakshlag, J. J.; Schwark, W. S.; Deabold, K. A.; Talsma, B. N.; Cital, S.; Lyubimov, A.; Iqbal, A.; Zakharov, A. Front. Vet. Sci. 2020, 7, 505, DOI: 10.3389/fvets.2020.00505
-
42Nguyen, L. C.; Yang, D.; Nicolaescu, V.; Best, T. J.; Ohtsuki, T.; Chen, S.-N.; Friesen, J. B.; Drayman, N.; Mohamed, A.; Dann, C.; Silva, D.; Gula, H.; Jones, K. A.; Millis, J. M.; Dickinson, B. C.; Tay, S.; Oakes, S. A.; Pauli, G. F.; Meltzer, D. O.; Randall, G.; Rosner, M. R. bioRxiv 2021, 2021.03.10.432967.
-
43Tautenhahn, R.; Patti, G. J.; Rinehart, D.; Siuzdak, G. Anal. Chem. 2012, 84, 5035– 5039, DOI: 10.1021/ac300698c
-
44Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 31, 455– 461, DOI: 10.1002/jcc.21334
-
45Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235– 242, DOI: 10.1093/nar/28.1.235
-
46Bates, T. A.; Weinstein, J. B.; Farley, S.; Leier, H. C.; Messer, W. B.; Tafesse, F. G. Cell Reports 2021, 34 (7), 108737, DOI: 10.1016/j.celrep.2021.108737
-
47Crawford, K. H. D.; Eguia, R.; Dingens, A. S.; Loes, A. N.; Malone, K. D.; Wolf, C. R.; Chu, H. Y.; Tortorici, M. A.; Veesler, D.; Murphy, M.; Pettie, D.; King, N. P.; Balazs, A. B.; Bloom, J. D. Viruses 2020, 12, 513, DOI: 10.3390/v12050513
-
48Case, J. B.; Bailey, A. L.; Kim, A. S.; Chen, R. E.; Diamond, M. S. Virology 2020, 548, 39– 48, DOI: 10.1016/j.virol.2020.05.015
-
49Katzelnick, L. C.; Coello Escoto, A.; McElvany, B. D.; Chávez, C.; Salje, H.; Luo, W.; Rodriguez-Barraquer, I.; Jarman, R.; Durbin, A. P.; Diehl, S. A.; Smith, D. J.; Whitehead, S. S.; Cummings, D. A. T. PLOS Neglect. Trop. Dis. 2018, 12, e0006862, DOI: 10.1371/journal.pntd.0006862
Comments